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 Econometrica, Vol. 48, No. 6 (September, 1980)

 ON OPTIMAL DEPLETION OF EXHAUSTIBLE RESOURCES:
 EXISTENCE AND CHARACTERIZATION RESULTS'

 BY TAPAN MITRA

 1. INTRODUCTION

 IN RECENT YEARS, there has developed a significant literature on the economics of

 natural resources. A part of this literature is concerned with finding the charac-

 teristics of optimal programs for economies with exhaustible resource constraints;
 that is, of jointly determining the optimal depletion of such resources, and optimal
 investment in augmentable capital goods.

 It should be noted that the theory of optimal economic growth, in the form

 given it by Ramsey [17], and extensively developed by many others, had been
 primarily concerned with the latter problem. Natural resources were often

 assumed to be supplied exogenously in given amounts in each period, an approach
 clearly unsuitable for capturing the essence of problems associated with the
 optimal use of exhaustible resources. The more recent literature derives its
 inspiration from Hotelling's classic paper [8], stressing the increasing significance
 of such resources in production, as they are irrevocably run down.

 I shall consider, in this paper, a model of intertemporal allocation in which there

 is a produced good (which can be used for consumption or for further production),
 and an exhaustible resource (which is essential for production), the total initial
 stock of which is given. The use of the resource over the (infinite) planning horizon
 must not exceed this available stock. A planner is assumed to evaluate consump-
 tion in each period, in terms of a utility function, and to "maximize" the

 undiscounted sum of these one-period utilities, to obtain, simultaneously, the
 optimal depletion of the exhaustible resource, and the optimal investment

 2
 pattern. This model resembles, in some aspect or other, the frameworks
 examined by Dasgupta [3], Dasgupta and Heal [4, 5], Solow [18], and Stiglitz [19],
 to mention only a few.

 I will address three sets of issues in this framework. First, an interesting problem
 in the theory of optimal economic growth is to find suitable conditions under

 which a competitive program is optimal. I will show that a feasible program is
 optimal if and only if (a) it is competitive,3 and (b) it satisfies the transversality
 condition, that the value of the capital and resource stocks, at the competitive
 prices, converges to zero (Theorem 3.1). It follows from this result, that a
 competitive program is optimal if and only if it satisfies the above-mentioned
 transversality condition. It should be noted that in traditional models of optimal
 growth (in which exhaustible resources do not appear as essential factors of
 production), a feasible program, under certain technological curvature condi-
 tions, is shown to be optimal if and only if it is competitive, and the value of input

 1 This research was partially supported by National Science Foundation Grant SOC-76-14342 to
 Cornell University. The present version has benefited from a referee's comments.

 2 For the precise sense in which a program is called optimal, see Section 2.
 3 For a definition of this concept, see Section 2.
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 stocks at the competitive prices is bounded above.4 Thus, the introduction of the
 exhaustible resource leads to the following qualitative difference in the charac-
 terization of optimality: competitive optimality is signaled by the transversality
 condition, rather than the input value boundedness condition, holding.

 Second, I study the asymptotic properties of optimal programs in this model.
 The most interesting of these properties are that (a) the consumption level
 increases monotonically to infinity, and (b) the relative price of the consumption
 good to the exhaustible resource decreases monotonically to zero (Theorem 4.1).
 The first result shows that the substitution possibilities of capital for the resource
 are given sufficient prominence, under undiscounted utility maximization, to
 make it optimal for consumption levels to grow indefinitely into the future. (It
 should be noted that when future utilities are discounted, the results of Dasgupta
 [3], and Dasgupta and Heal [4], show that the consumption could decrease to zero
 in the future.) The second result states that, relative to the consumption good, the
 social valuation placed on the exhaustible resource rises, as its stock is depleted.5

 Third, I will study the problem of existence of optimal programs in this
 framework. It should be noted that Solow [18] and Dasgupta and Heal [5] prove
 the existence of an optimal program by a method of "construction" which relies
 heavily on the parametric forms of the production and utility functions, which they
 use. Since these functions take general forms in this paper, I follow the alternative
 approach, used widely in proving the existence of optimal programs in traditional
 growth models (see, especially, Gale [6] and Brock [1]). This method has three
 main steps. First, one establishes the existence of a "good" program. Second, any
 program which is not "good" is shown to be ineligible as a candidate for an
 optimal program. Third, in the class of good programs, one finds a program which
 maximizes the sum of undiscounted utilities, and this is shown to be optimal. In
 contrast to the traditional models, it turns out that the difficult step in the
 three-part procedure is the first, since one has to ensure that, as the resource stock
 is (rapidly) depleted, consumption can still grow fast enough to make the utility
 sum converge. This, in turn, suggests that an interconnecting condition between
 the production and utility functions will be needed to ensure that a good (and
 hence an optimal) program exists.

 To formulate this condition of interdependence, I define the upper and lower
 asymptotic elasticities of the production function (a and a, respectively and an
 "effective" utility function. It is shown that if (a) the utility function is bounded
 above, (b) a> 1- a, and (c) there is 0< a * < a for which the * area under the
 a*-effective utility function is finite, then an optimal program exists (Theorem
 5.1).6 It is also shown that if an optimal program exists, then the utility function is

 4 It is worth mentioning that in traditional models, when future utilities are discounted, optimality is
 characterized by the competitive conditions, and the transversality condition that the value of inputs
 converges to zero. See, for example, Peleg and Ryder [16] for a statement of this result.

 5 These asymptotic properties were observed by Solow [18] and Dasgupta and Heal [5], in the case
 where the production function is Cobb-Douglas, and the utility function has a constant elasticity of
 marginal utility. Thus, Theorem 4.1 is a generalization of their results to cases where the production
 and utility functions assume nonparametric forms.

 6 For precise definitions of the concepts used, and an accurate statement of the Theorem, see
 Section 5.
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 bounded above (Lemma 6.1). Then, for bounded utility functions, for which the
 lower asymptotic elasticity is positive (see Assumption 9), it is shown that if either
 (a')cz <1- a or (b') for some a > ri, the * area under the a-effective utility

 2. THE MODEL

 2a. Production

 Consider an economy, with a technology given by a production function, G,
 from R 2 to R+. The production possibilities consist of capital input, k, exhaustible
 resource input, r, and current output G(k, r) for (k, r) _ 0.8 Capital is assumed to

 be nondepreciating,9 and total output, y, is defined as [G(k, r) + k] for (k, r) : 0. A
 total output function, F, can then be defined by

 (2.1) F(k, r) = G(k, r) + k for (k, r) - 0.

 The production function, G, is assumed to satisfy:

 ASSUMPTION 1: G is concave, homogeneous of degree one, continuous for (k,
 r) - 0, and twice differentiable for (k, r) >> 0.

 AsSUMPTION 2: Gk = (aG/ak) > 0, Gr = (dG/dr) > 0, for (k, r) >> 0.

 The initial capital input, -k, and the initial available stock of the exhaustible
 resource, 5, are historically given, and positive. A feasible program is a sequence
 (k, r, y, c) = (kt, rt, Yt+i, ct+?) such that

 00

 (2.2) ko=[, E rt yt+1=F(kt,rt) for t:0,
 t=O

 ct+l = yt+1 - kt+1, (kt, rt, yt+i, ct+i) 0 ? for t ? 0.

 Associated with a feasible program (k, r, y, c) is a sequence of resource stocks
 (S)= (St), given by

 (2.3) So=S, St+1=St-rt for t0.

 7 For a precise statement of this result, see Section 6. It is helpful to look, in this connection, at
 Theorem 6.1, as the corollary follows directly from this result.

 8Foranytwon-vectors,a and b, a b meansai, bi, fori= 1, . . . ,n;a> b meansa ,b, anda #b;
 a >>b means a1>bi, for i= 1,...,n.

 9 It should be emphasized that, as in Solow [18], Stiglitz [191, Dasgupta and Heal [5], this paper
 relies on the assumption that there is no depreciation of capital. Alternatively, one might start with a
 "gross-output function" H(k, r) from R+ to R+, and a growth equation

 H(kt, rt) = (kt+ - kt) + 8kt + ct+1

 where 0 - 8 a < 1. Then, defining the "net-output function" G(k, r) = H(k, r) - 8k, for (k, r) 2 0, we get
 the model described in Section 2. However, while the nonnegative range of H is easily justified, the
 nonnegative range of G-which is assumed in Section 2-requires either (i) 8 = 0, or (ii) if 8 > 0, then
 H(k, O)-8k for k - 0. Condition (ii) requires that without the exhaustible resource input, the gross
 output can at least cover depreciation expenses. It should also be noted that in case (ii), under
 Assumption 7, we, in fact, require H(k, 0) = 8k for k > 0.
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 Notice that, by (2.2), St 0, for t 0. A feasible program (k, r, y, c) is called
 interior if (kt, rt) >> 0, for t - 0. It is said to maintain a positive consumption level if
 inf .-1 c C> 0

 A feasible program (k, r, y, c) dominates a feasible program (k, r, y, c) if it ? c,
 for all t : 1, and it > ct for some t. A feasible program (k, r, y, c) is inefficient if
 there is a feasible program (k, F, y, j) which dominates it. It is efficient if it is not
 inefficient.

 2b. Preferences

 The planner is endowed with a utility function, u, from R+ to R.10 A feasible
 program (k*, r*, y*, c*) is called optimal if

 T

 (2.4) limTo sup E [u(ct)-u(c*t)] 0
 t=1

 for every feasible program (k, r, y, c).
 A feasible program (k*, r*, y*', c*) is called competitive if there is a sequence

 (p*, q*) = (p*, q*) of nonnegative prices, such that

 (2.5) u(c*)-p*c*C u(c)-p*c, for c0, t 1,

 (2.6) p*+iy +i -p*k* -q*r* :P*+p Y -p*k -q*r

 for (k, r)-0, y =F(k, r), t 0,

 (2.7) q*=q* 1 for t > 0.

 A price sequence (p*, q*), associated with a competitive program (k*, r*, y*, c*)
 for which (2.5), (2.6), (2.7) hold, are called competitive prices; (2.5), (2.6), (2.7) are
 called competitive conditions. A competitive program (k*, r*, y*, c*) satisfies the
 transversality condition at the price sequence (p*, q*) if

 (2.8) lim [p*k* + q*S*] = 0.
 t-<o

 The following assumptions on u will be used in this paper:

 ASSUMPTION 3: u (c) is strictly increasing for c > 0.

 AsSUMPTION 4: u(c) is twice differentiable for c > 0.

 ASSUMPTION 5: u(c) is concave for c ? 0; u"(c) <0 for c >0.

 ASSUMPTION 6: u(c) satisfies the end-point condition: u'(c) -- oo as c ->0.

 10 A denotes the extended real line, that is [- oo, oo]. This is to allow utility functions for which the
 utility level goes to minus infinity, as consumption goes to zero.
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 3. CHARACTERIZATION OF OPTIMALITY

 A problem of long-standing interest in the theory of optimal economic growth is
 to find suitable conditions, which completely characterize the set of optimal

 programs. This is usually referred to as the problem of characterizing optimality.
 In this section, I will show that a feasible program is optimal if and only if (a) it is

 competitive, and (b) it satisfies the transversality condition at its competitive prices
 (Theorem 3.1). A consequence of this result is that a competitive program is

 optimal if and only if it satisfies the transversality condition (see Corollary 3.1).

 It should be noted that the traditional theory of optimal economic growth,

 where exhaustible resources are not present as essential factors of production (and

 where future utilities are not discounted, as in the present paper), observes that,
 under suitable conditions on the technology, if the value of inputs along a

 competitive program is bounded above, then this program is optimal (see, for
 example, von Weizsacker [20] and McKenzie [11], for the case where technology
 is allowed to change over time). Peleg [14, 15] shows that when the technology set
 is stationary over time, the converse is also true.

 The introduction of the exhaustible resource as an essential factor of production
 into the model, therefore, seems to produce the following qualitative difference in
 the characterization of optimality: whether or not competitive programs are
 optimal is signalled by the transversality condition being satisfied or violated,
 rather than by the input value boundedness condition being satisfied, or
 violated.11

 The exhaustible resource will be called an essential factor of production if G(k,
 0) = 0, for k - 0. I will now assume:

 ASSUMPTION 7: G(k, 0) = 0 = G(0, r), for (k, r) : O; Gr e OO as r - 0, for k > 0.

 THEOREM 3.1: Under Assumptions 1-7 a feasible program (k*, r*, y*, c*) is
 optimal if and only if there is a sequence (p*, q*) of nonnegative prices, satisfying
 (2.5), (2.6), (2.7) and (2.8).12

 PROOF: Necessity. Suppose a feasible program (k*', r* ', y*, c*) is optimal. Then,
 for each t : 1, the expression u[F(k* l, r* 1) - k] + u[F(k, r*') - k* 1] must be a
 maximum at k = k *. By Assumption 6, the maximum must be at an interior point;
 that is, c*' > 0 for t - 1. Hence, by Assumption 7, k* > 0 and r* > 0 for t 3 0. So,
 using Assumptions 1 and 4, we get

 (3.1) u'(c*) = u'(Cl )Fk* for t: 1.

 " This is closely related to the qualitative difference in the characterization of efficiency that is
 produced by including or excluding an exhaustible resource as an essential factor of production. For a

 detailed discussion of this point, see Mitra [12].
 12 Notice that the present value price of the exhaustible resource is constant for an optimal program.

 In fact, this is true of any efficient program. A discussion of this, and related results, are omitted here, as
 they appear, in detail, in Mitra [12].
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 Also, for each t - 1, for 0 < r - r* 1 + r*t, the expression

 u[F(k* l, r) -k*t]+ u[F(k*t, r* l + r* -r) -k*+ 1]

 must be a maximum at r = r* 1. Since r* > 0, k* > 0 fort t O, so we get

 (3.2) u (c *)Frt*i = a (ct*+)Fr* for t: 1.

 From (3.1), (3.2), we obtain, using Assumptions 2 and 3,

 (3.3) (Fr*/Fr*tl)= Fk* for t 1.
 Define a sequence (p*, q*) in the following way:

 = u'(c *)Fk*; p* = u'(c*) for t: 1;
 (3.4)

 q* = u'(c*)Fr* for t0.

 Now, by Assumption 5, we have for c : 0 and t : 1,

 (3.5) u (c)-u (C*) < U'(C*)(C -C*) =p* (c- C*)

 Rearranging the terms in (3.5) yields (2.5). Similarly, by Assumption 1, we have
 for (k, r) 0, y = F(k, r) and t 0,

 (3.6) F(k, r)-F(k*, r*):Fk* (k -k*)+Fr* (r-r*).
 Multiplying through by P*+i in (3.6), and using (3.1), (3.2), we get

 (3.7) P*1( *1)<p* (k - k* ) + q* (r - r* ).

 Rearranging the terms in (3.7) yields (2.6). Finally, by (3.4), q* = q*+1 for t : 0,
 which yields (2.7). Thus, we have found a sequence (p*, q*) of nonnegative prices,
 such that (2.5), (2.6), and (2.7) are satisfied. It remains to show that at these prices,
 the transversality condition (2.8) is also satisfied. 13

 Note that since (k*, r*, y *, c*) is optimal, so by Assumption 3, it is efficient. By
 (2.3), S* is monotonically nonincreasing, and bounded below by zero, so S*
 converges to a limit; call it S. Then S : 0. We claim that S = 0. For, if S> 0, then
 we could use an extra S amount of the resource in period t = 0, produce and
 consume more in period t = 1 (by Assumption 2), leaving the rest of the program
 unaffected. This would violate efficiency. Hence S=0 or q*S* ( = q*S*) con-
 verges to zero as t -- co. So, to establish (2.8), we have only to establish that
 pt*k* -0 as t --o.

 First, we prove that p t*k * converges to a limit. For t ? 0,

 pt*+l Ct*+l =pt*+lyt*+i - pt*+lk*t*+l

 = Pt*+lyt*+i -Pt*kt* -q qr*]

 13 This proof follows closely the method used in Mitra [12].
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 DEPLETION OF RESOURCES 1437

 by using (2.6), and the fact that G(k, r) and hence F(k, r) is homogeneous of
 degree one. Hence, for T - 0,

 T T T

 (3.8) E p*t+ic*t*+ = E [p*k* -p* ikt*]+ i q*r*
 t=o t=O t=o

 T

 =poko + E qtrt -PT+lkT+l-
 t=O

 Now, xT=0 p+ tc+1 is monotonically nondecreasing in T. Also, by (2.7),

 T T

 (3.9) E q*r* =qO* Y. r q * S.
 t=O t=O

 So, by (3.8), XT=op +ic*+i is bounded above by p *k+qq*S for T-O. Hence,
 = + 1 converges. By (3.9), ot=o q*r* also converges. Hence, by (3.8),

 T*+k* + converges to a limit, as T--> o.
 We claim, now, that this limit is zero. If not, then there is b > 0, such that for

 t:O, Pt*k* b. Since Xwt=op*+ic1+ converges, there is r such that C* -
 l t=TP *+ 1 *+l (b/2). If C* = 0, the program (k*, r*, y*, c*) is clearly inefficient.
 So we consider only the case in which CT* > 0. Write vP+* [(p*+ic*+* )/C* ] for
 t : r. Clearly, 't=T V*+i = 1. Now, construct a sequence (k,r, y, c) in the following
 way: (ko, ro)=(k*, r*); for 1< t<r, (k, yt,rt, ct)=(k*, r*, y*, c*); for t=r, (kt,
 rt)= (k*, r*), ct=ct*+?k , yt=y*; for t>t, (kt, rt)=a*(k*, r*), yt=F(kt1,
 rt_1), ct = yt - kt, where a* = [2 - " 2 * 1 ].

 Now, clearly, (ks, rt) >> 0 for t 3 0; ct = C*t for t < r, and ct > c *for t = t. We will
 show that ct : 0 for t : r (so that the sequence (k, r, y, c) represents a feasible
 program), and that ct ? c- for t> r (so that (k, r, y, c) dominates (k*, r*, y*, c*)).

 For t> T,

 *= apt*F(kt-1, rt-1)--p*kt

 :Bpt*F(at* ikt* i, at* irt* i)-pt*a*kt*

 Pt Ce,. t t

 = a tO-lP,*F(kw h, rtC r ) -T a *p,*kc*

 =at* ip* (C,* +k,*) - a,*p*kt*

 = a d ipthc +(1- ad* i )p*c* +a* lp*kc* - s t*pl*ka*
 iefcetThsc tradiction establishes t t1- - a henc (2.8).

 p,*, +p*k,* [a,* +P t - a, 2 2 -(1- a,* )V,* ]

 3-pt*c,* +p,*k,*[-v,* -2Vt*

 P* * = t Ct .

 Since p, > O for t B O- , we have ct 3: c,* for t > t. This proves that (k, r, y, c) is a

 feasible program, and that it dominates (k*, r*, y*, c*), so that the latter is
 inefficient. This contradiction establishes thatp,*k,* -- O, as t-- o o, and hence (2.8).
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 PROOF: Sufficiency. Suppose a feasible program (k*, r*, y*, c*) satisfies (2.5),
 (2.6), (2.7), and (2.8). Then given any feasible program (k, r, y, c), we have for
 t : 1 (by using (2.5), (2.6))

 u(c')- u(c*) -, p* (c, -t c)

 =P*t(yt -kt) -p*(y* -k*)

 =[p*yt - p* lkt-, - q* irti] + q* irt-,

 +[p* 1kt-1-p*k*t]-[p*y* -p* 1k* 1 -q* 1r* 1]
 -qt* jr* i -[p* jk* 1 -pt*k*]

 Iq* 1(rt1 -r* 1)+[p* 1kt- -p*kt] -[p* 1k* L -p*k*].
 Hence, for T > 1, we have

 T T

 (3.10) E [u(ct) -u(c*)]-< E q*- i(rt-l -r* l)+po*(ko-ko*)+P*T(k*T - kT)-
 t=1 t=1

 Using (2.7) in (3.10), we then have

 T T

 Y. [u(ct)-u(ct )]--::q* E (rt-l-rt-l)+p*(k*-kT)
 t=1 t=1

 = qo O -ST) -q* O -ST) +pT (k* - kT)

 = [qOST +p *TkT]]-[qOST +p*'k T]

 [q OST + p TS] = [qTST +P]TkT]

 Using (2.8) in the above inequality, we have

 T

 (3.11) limsup E [u(ct)-u(c*)]1<0.
 T-+co t=1

 This proves that (k*, r*, y*, c*) is optimal.

 The following two corollaries are stated, without proofs, since they follow
 directly from the Proof of Theorem 3.1.

 COROLLARY 3.1: Under Assumptions 1-7, if (k*, r*, y*, c*) is a competitive
 program, then the following five statements are equivalent: (i) (k*, r*, y*, c*) is
 optimal. (ii) (k*, r*, y*, c*) is efficient. (iii) limt, [p*k* +q*S*]= 0. (iv) oo>
 t=l pt*c = po-k +q*S. (v) ac > ISt= pCt* c t= ptc*t for every feasible program
 (k, r, y, c).

 COROLLARY 3.2: UnderAssumptions 1-7, a feasible program (k*, r*, y*, c*) is

 optimal if and only if: (i) (kr*, r*, c+) >> 0 for t : 0. (ii) u'(c *) = u'(c *+i )Fk* for
 t > 1. (iii) (Fr/Frt *-1)=Fk* for t - 1. (iv) limt -S. = 0; lim,[u'(c *)k* I = 0.
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 DEPLETION OF RESOURCES 1439

 In Corollary 3.1, statement (iv) says that the present value of the consumption
 sequence of the competitive program equals the present value of initial "wealth."

 Statement (v) says that the present value of the consumption sequence of the
 competitive program is a maximum in the set of all feasible consumption
 sequences.

 In Corollary 3.2, (ii) is the "Ramsey-Euler equation," so familiar in traditional
 optimal growth theory. Condition (iii) is an efficiency condition for allocation of
 the exhaustible resource over time, which says that the proportionate rate of
 change of the marginal productivity of the resource always equals the level of the

 marginal productivity of capital. The first part of (iv) says that the total resource
 stock should be exhausted over the horizon; the second part is a "capital-value
 transversality condition."

 In the rest of the paper, in view of Theorem 3.1, we will always associate with an
 optimal program a price sequence given precisely by (3.4).

 4. ASYMPTOTIC PROPERTIES OF OPTIMAL PROGRAMS

 In this section, I will establish some asymptotic properties of optimal depletion
 programs. Two of the important properties are: (a) the consumption level along

 the optimal program monotonically increases to infinity; (b) the relative price of
 the consumption good to that of the exhaustible resource monotonically decreases
 to zero. The first property shows that, for optimal programs (when they exist)
 capital accumulation will more than offset the effects of a (rapidly) deteriorating
 resource stock, and make larger future consumption levels possible. The second
 property simply states that as the resource stock gets depleted over time the price
 of the resource relative to that of the consumption good must rise to infinitely high
 levels, reflecting the increased valuation placed on this essential but exhaustible
 resource. Similar results have been obtained by Solow [18], and Dasgupta and
 Heal [5], in the case where the production function is of the Cobb-Douglas form,
 and the utility function satisfies the condition that the elasticity of marginal utility
 is constant.

 It should be noted that asymptotic properties of optimal programs, when future

 utilities are discounted (see, for example, Dasgupta [3], Dasgupta and Heal [4, 5],
 and Stiglitz [19]), are significantly different from those in the undiscounted case,
 the most important being that in the discounted case the level of consumption
 along the optimal program can decrease to zero.

 I will start by defining a new term. For k > 0, the resource-capital ratio is defined
 by

 (4.1) z = (rlk).

 It is of course clear that, by Assumption 1, G(k, r) = k G(1, z) = k g(z). Further-
 more, we have Gk = g(z) - z g'(z), and Gr = g'(z), so that the marginal products of
 capital and resource depend only on the resource-capital ratio.
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 THEOREM 4. 1: 14 UnderAssumptions 1-7 if (k *, r*, y *, c *) is an optimalprogram,

 then: (i) c*, k*, y *, Gr* monotonically increase to oo, as t --- oo); (ii) S*, Z*, (p*/q* ),
 Gk* monotonically decrease to 0, as t-oco; (iii) G(k*, r*)-oco, as t-oco; (iv) r*,
 [G(k*, r*)/k* ], [c*+i/k* ] converge to zero, as t -o-o.

 PROOF: To prove the theorem, we will use Corollary 3.2. We start with

 statement (i). We know that for t : 1, u'(c*) = u'(c*+1 )(1 + Gk ), so that u'(c* ) >
 u'(c*+1), and c +>>c* for t:1. We claim that c* --oo, as t--oo. If not, then
 c* J, where 0 < j < 00. This implies, by a direct application of condition (iv) of

 Corollary 3.2, that k* 0 as t -- oo. This, in turn, implies that c 0 as t -> 00, by
 feasibility and Assumption 7, noting that r* S for t 0. This contradiction
 establishes the claim. Hence c* monotonically increases to 00, as t -> 0o.

 It follows from condition (iii) of Corollary 3.2, that g'(z*) = Gr* > Gr*i =
 g'(z*L1) for t - 1, so that z* S zt1 for t : 1. Suppose for some r, k*+1. Then,
 since z* S z*, so r* r*. Also, since c +1 < c* 2, so k* 1 ; k*+2. Repeating the
 argument, we observe that k* is bounded above by k*, for t : r. But this violates
 feasibility, since r* < S for t 0, and c* o0 as t -o 0o. Hence, k* must be
 monotonically increasing. Furthermore, k 00, as t -- 00, for if k * < k, for a
 subsequence of periods, then c*+1 must be bounded for that subsequence too, by
 feasibility, and the fact that rt* 5, S for t : 0. This contradiction establishes the
 result regarding k t.

 Since c * monotonically increases to 00, and k * monotonically increases to 00, as
 t - oo, so y = k * + c * monotonically increases to 00 as t - o00. Finally, note that by
 condition (iii) of Corollary 3.2. that Gr*t is monotonically increasing. Also, since
 rt* -S for t:O, and k* increases to infinity, so z* -0, as t -oo. So, Gr* =
 g'(z *) -- oo as t -- 00 by Assumption 7. This completes the proof of statement (i).

 We come, now, to the proof of statement (ii). Notice that since r* > 0 for t : 0,
 so S*+1 < S* for t O0. Also, by condition (iv) of Corollary 3.2, S* - O as t -o .
 Hence S* monotonically decreases to zero. We have already noted that by
 condition (iii) of Corollary 3.2, g'(z +l)> g'(z *), so that z*+1 < z* for t : 0. Also,
 r* 5S for t 0, while k* o0 as t -- 00, so that z* monotonically decreases to
 zero. Since c* monotonically increases to infinity, p* monotonically decreases to
 zero, by Assumptions 5 and 6. Also, q* is a constant, so (p*/q*) monotonically
 decreases to zero. Finally, note that Gk* = g(z) - z*g'(z*), which decreases,
 since z* decreases as t -- 00. Also, by Assumption 7, g(z* -) 0 as z* 0, so that
 Gk* monotonically decreases to zero at t->o0. This completes the proof of
 statement (ii).

 To prove statement (iii), notice that G(k*, r*) = c* 1 + (kt*+ - k* ) c? C t1, since
 k* is monotonically increasing. Hence, noting that c* increases to infinity as
 t---00, G(kt*, r*) must also become infinitely large as t -- 00. This completes the
 proof of statement (iii).

 14 It should be noted that Solow [18] and Dasgupta and Heal [5] are able to characterize the
 asymptotic behavior of the following variables as well: the ratio of consumption to current output, and
 the ratio of the resource flow to the remaining resource stock. I believe this is possible because they use
 particular parametric forms for production and utility functions, while Theorem 4.1 deals with general
 forms of these functions.
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 We finally come to the proof of statement (iv). Notice that since 't= o r* S 5, so
 r* ->0 as t-> 00. Next, note that g(z*) = [G(k*, r*)/k*], and we know that z * ->0
 as t-co. So, by Assumption 7, [G(k*, r*)/k*]-0 as t-> c. Finally, note that
 c+ = G(k*, r*)+(k* -kk*+1) G(k*, r*), since k* is monotonically increasing
 as t -> 00. Hence [c *+ll/k* * ] [G(k*, r* )/k*], so that, by the immediately previous
 result, [c +1/k*]- 0 as t -> o. This completes the proof of statement (iv).

 5. AN EXISTENCE RESULT

 This section is devoted to finding a set of conditions on the utility and
 production functions, which ensure that there exists an optimal program. It should
 be noted that both Solow [18] and Dasgupta and Heal [5], prove the existence of
 an optimal program (when future utilities are not discounted), by "constructing" a
 program, and showing that such a program is indeed optimal. Their method of
 construction is possible because of the parametric forms that they use for the
 utility and production functions. In the more general framework of this paper,
 alternative methods of proof have to be devised.

 Consider a "traditional" method of proving the existence of optimal programs
 in models which do not emphasize the role of an exhaustible resource as an
 essential factor of production (see, for example, Koopmans [9], Gale [6], Brock
 [1], McKenzie [10]). There are primarily three steps in the argument: (a) there
 exists a "good" program; (b) any feasible program which is not "good" is
 ineligible as a candidate for an optimal program (and, therefore, "bad"); (c) in the
 class of good programs, one finds a program which maximizes the sum of utilities
 (or shortfalls from some level), and this is an optimal program.

 Now, it appears that in these traditional models, because all stocks of goods can
 be ultimately augmented, and because of the useful properties of a golden-rule
 program (or, its multisectoral counterpart, the optimal stationary program), part
 (a) is relatively easy to verify. As soon as exhaustible resources are introduced into
 the model, the stock of the exhaustible resource clearly cannot be augmented, and
 the golden-rule program ceases to exist. Consequently, it turns out that in proving
 the existence of optimal programs, it is part (a) of the three-step argument which is
 of crucial importance. One must ensure that even with exhaustible resource
 constraints, consumption can be increased to infinity fast enough to make the
 utility sum converge. If this can be done, part (b) is trivial to verify, and part (c)
 follows by traditional arguments. Thus, the key to an existence result is to impose
 sufficient conditions on the utility and production functions to ensure that a good
 program exists.

 I will start by defining a few terms. For r > 0, the capital-resource ratio is defined
 as

 (5.1) X = (k/r).

 It is, of course, clear that G(k, r) = rG(x, 1) = rf(x), and Gk =f'(x), Gr =f(x)-x
 f'(x). The share of capital in current output or the elasticity of f is defined by

 (5.2) e(x) = [f'(x) x/f(x)] for x > 0.
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 Following Brock and Gale [2], I define the asymptotic upper and lower elasticities
 off (1 and a, respectively) by

 (5.3) a- = lim sup e(x); a = lim inf e(x).

 Given any a such that O<a < 1, I will denote (1 -a) by /8; (1 -,8)/(1-a) by y;
 (a-/3)/(1-a) by 8; (a-,8)/(1-,8) by e.

 The utility function, u, is said to be bounded above if

 (5.4) sup u (c) < Co.
 c_O

 I will, now, proceed to assume the following:

 ASSUMPTION 8: u is bounded above.

 Under Assumption 8 let us denote sup c:0 u (c) by ui. Without loss of generality, we
 can normalize u7 = 0. Regarding the justification of Assumption 8, it should be

 pointed out that a necessary condition for the existence of an optimal program is
 that u be bounded above (see Lemma 6.1 in the next section). Thus, without

 Assumption 8 we clearly cannot have an existence theorem.

 Given Assumption 8, I define for 0< a < 1, an a-effective utility function w
 (v; a), for v :0 by

 (5.5) w(v; a)= -u(v8).

 The * area under the a-effective utility functions is defined by

 (5.6) jw(v; a) dv.
 1

 A feasible program (k, r, y, c) is called good if there is M > - oo, such that

 T

 (5.7) E u (ct) M for T 1.
 t=l

 It is called bad if

 T

 (5.8) Z u(ct)--ao as T ->o.
 t=l

 LEMMA 5.1: Under Assumptions 1-7 and a >/3, given any a* satisfying
 0 < a * < a, there exists a feasible program (k, r, y, c) and an integer T : 1 such that

 (5.9) Ct>0 for t,:1,

 Ct:-tS* for t :T.

 PROOF: Choose a such that a* < a < a, where a is sufficiently close to a to

 ensure a >,G. Since a >,G, this is possible. Notice that since a > a *, so 8 > 3*.
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 Choose 1 < u < y, where A is close enough to y to ensure that (u - 1) > 3*. Since
 (y- 1) = 8 > 8*, this can be done. Finally, choose 0 > 1, where 0 is sufficiently

 close to 1, such that (1- 0,8) > ,(1- a). Since (1 -,B) = y(1 - a) > A (1 - a), this
 can be done. Hence, we have

 (5.10) A-(aA - ,i) > (,-1>8

 By the definition of a there is i < x such that, for x 3 x, f(x) > x ' (see Brock
 and Gale [2, pp. 234-235], for details). Now, choose n > 0 such that

 (5.11) E [nl/(l + t)91 -- S.
 t=O

 Define a sequence (k', r', y', c') as follows: k' = k, r' = [n/(t+ 1)], yt+'=
 G(kt, r')+k', cl+i = G(kl, r4) for t0. It is clear that (k', r', y', c') is a feasible
 program, and x' -t o? as t -> oo. Choose r < oo such that the following conditions
 are satisfied:

 (a) xI>i for t3r,

 (b) 'ka-n3[/i(t+2)-]/(t+1)A for t:r.

 It is easy to ensure that (a) is satisfied. Using (5.10), (b) can be ensured as well.
 Choose N>O such that N(r+l)'=k; also, let h=- Nan9. Now, define a
 sequence (k, r, y, c) as follows: kt=kk for t<r, kt=N(t+ 1)I for t3:r; rt=,r'
 yt+1=G(kt, rt)+kk for t30; Ct+1=Ct+1 for t<r; ct+l=yt+l-kt+i for t3r. We
 have to check that Ct+l 3 0 for t 3 r, to ensure that (k, r, y, c) is a feasible program.
 In fact, we will show that ct+i1:-h(t+1)A for t:-r.

 For t 3 zr, we have ct+1 = G(kt, rt) + kt - kt+l = rt f(xt) + kt - kt+i >
 kT r + kt - kt+l (by choice of x? and r). Hence, we have

 ct= n Na (t + 1)A + N(t + 1)" - N(t + 2)

 N(t + 1)k[nfNl- /l-{(t + 2)'/(t + 1)A}]

 ? N(t + 1)A [1nI3Na '1 + 0ngk 1 - {,u (t + 2)A-l/(t + 1)' }]

 3N(t + 1)A 2fnNa -1 (by choice of r)

 = Nc'n a (t + 1 ) =h (t + 1)'k

 Hence (k, r, y, c) is a feasible program. Since A > 8* by (5.10), so there exists an
 integer T > r, such that

 ct:,:-t for t3T.

 This establishes the lemma. Q.E.D.
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 LEMMA 5.2: Under Assumptions 1-8 there exists a good program (k, r, y, c) if

 (5.12) a >f'5 and

 (5.13) w (v; a*)dv < oo
 1

 for some a *, satisfying O < a *< a.

 PROOF: Given (5.12) and a choice of a* satisfying (5.13), there is a feasible

 program (k, r, y, c), and an integer T: 1, such that (5.9) holds (by Lemma 5.1).

 Using (5.13), we have, by the Maclaurin-Cauchy integral test (see Hardy [7, pp.
 351-352]),

 00

 (5.14) E w[t;a*]<ao.
 t=l

 This means, by definition of w, that

 00

 (5.15) E - u[t"*] < o.
 t=1

 Since ct : t* for t : T, so

 00 00 00

 (5.16) E -u(ct)-- E -0(t*)*S E -u(t8*)<0o.
 t=T t=T t=1

 Since ct > 0 for t : 1, so

 00

 (5.17) E -u(ct)<00.
 t=l

 This means that (k, r, y, c) is a good program.

 LEMMA 5.3: Under Assumptions 1-8 a feasible program (k, r, y, c) which is not

 good, is bad.

 PROOF: Suppose (k, r, y, c) is a feasible program, which is not good. Then, there
 is a subsequence of periods T7 for which

 T

 (5.18) E u(ct)--ao as Ts->ao.
 t=l

 15 It was shown by Solow [18] that if the elasticity of f is constant, then this condition is necessary
 and sufficient for a positive consumption level to be maintained. My own investigation of this question
 [13], when the production function is of a general form, shows that this condition is sufficient to ensure
 that a positive consumption level be maintained. These results partly justify using this condition to
 make the problem of more interest. We will also see that a condition "close to" (5.12) is necessary for
 the existence of optimal programs (see (6.6) below).
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 Since, for c : 0, u(c) - 0, so YT=1 u(c,) is monotonically nonincreasing, and so by
 (5.18),

 T

 (5.19) E U(Cct)--o as T->coo.
 t=l

 (5.19) means that (k, r, y, c) is a bad program.

 THEOREM 5.1: UnderAssumptions 1-8 there exists an optimalprogram if (5.12)
 and (5.13) hold.

 PROOF: Define A= inf[t=1 - u(ct): (k, r, y, c) is a feasible program]. By
 Lemma 5.2, there exists a good program, so that A < c.

 Choose a sequence of programs (k', r', y', c') such that
 00

 (5.20) E-u(c)-<A+(1/i) (i= 1,2,.. .).
 t=1

 Let k =max [G(k, -), k]. Then, by feasibility, k', c +1, Yi+1 i 2tkfor t - 0, for all i;
 also St ' S for t > 0, for all i. Hence, there is a subsequence (call it j) of i, such that
 for each t - 0, (kj, S', Y +1, ci+1) -> (k*, S*, Y*+1, c*+1) as jooo. It is straightfor-
 ward to check that (k*, r*, y*, c*) is a feasible program, by defining r* = S- S
 for t:0. Notice that, by the definition of A, XI -u(c )?A. Let B=
 I't=, -u(c*), and let us suppose B>A. Pick A1, B1 so that A<A1<B1<B.
 Choose To so that T:To implies t=/ -u(cC*):B1. Notice that for t1,
 u(c4) - u(c*) as j oo. So we can choose jo, so thatj j jO implies. tT=01 - u(cD) 2 A1.
 This means that we have, for j > jo,

 oo) To

 (5.21) A +(1/j) >: E - u(cit) ? 2 - u(cjt).
 t=1 t=1

 (5.21) implies that there are infinitely many j, such that A + (1/j) A 1 > A. This is
 a contradiction. Hence, B = A.

 Now, it can be shown that (k*, r*, y*, c*) is an optimal program. Consider any
 feasible program (k, r, y, c). By Lemma 5.3, it is either good or bad. If it is bad,
 then

 T

 (5.22) lim sup E [u (ct) - u (c*)]=- o
 T-o - t=1

 so that (2.4) is clearly satisfied. If it is good, then :to=1 u (ct) is convergent, so that

 T oo oo

 (5.23) lim sup [u(ct)-u(c*)]= E u(ct)- Z u(c*)-<A-A
 T->oo t=1 t=1 t=1

 by definition of A and construction of (k*, r*, y*, c*). Hence (2.4) is again
 satisfied, This proves that (k*, r*, y*, c*) is optimal.
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 REMARK: The proof of Theorem 5.1 follows closely the method of Brock [1, p.

 278]. Thus the method of proving the existence of an optimal program in
 traditional growth models (in which exhaustible resources are not included as
 essential factors of production) suffices in the present model too, once it is shown
 that a good program exists.

 The condition (5.13) may appear somewhat complicated, but it is quite simple
 to apply to cases, where the utility and production functions are given by

 well-known parametric forms, as the following example shows.

 EXAMPLE 5.1: Consider a case where G(k, r)= k4r/ (a, G are positive
 constants, a + = 1), and u(c)= -c'f(o-> 1). Then Assumptions 1-8 are
 satisfied.

 Suppose, now, that a >1 aand o-> [(1G- a)/( -1)]. Then there is a * such that

 O<a*< a and o->[(1-8*)/(a*-,8*)], i.e., (o- 1)8*> 1. So,
 00 00

 J w(v; a*) dv = j [1/v(0-l)8*] dv <oo.

 Hence, (5.12) and (5.13) are satisfied, and an optimal program exists. This is a
 result proved by Solow [18] and Dasgupta and Heal [5].

 6. A NON-EXISTENCE RESULT

 It is worthwhile to show that the existence theorem of the previous section was

 not obtained under overly strong sufficient conditions. This is best demonstrated

 by proving that if an optimal program exists, then conditions "close to" (5.12) and
 (5.13) must be satisfied. However, before doing that, it is worthwhile to justify the
 use of Assumption 8 in Theorem 5.1, as follows:

 LEMMA 6.1: Under Assumptions 1-7, if an optimal program exists, then

 (6.1) sup u(c)<oo.
 c aO

 PROOF: Suppose an optimal program exists; call it (k*, r*, y*, c*). Then by
 Theorem 3.1, there exists a sequence (p*, q*) of nonnegative prices satisfying
 (2.5), (2.6), (2.7), and (2.8).

 Using (2.5) and (2.6), we have for t 1,

 u(C*t+1)-u(C*t) [pt (C p q[k-C )

 = P ( t*1 kt*+ )- * (y*]+[)* )k
 = P*Y*+1 -p* 1k* - q* ir* i p k* - p**+]

 +q* lr* -[p*y* -p* ik* l - q* lr* l]

 -[P*-1k*- - p*kt* ] -p 1k* 1-pr*k
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 Then, using (2.7) for T1, we have

 T

 E, [u(ct*+,)-u(c* )41i[p*k*-p*k*+lI
 t=1

 T

 -[p*ok o -P Tk*T] +q t r t-1 ) 0 0 T T 0 (r-r)
 t=1

 0po 1 +pT (kT- T+ 1 0

 By Theorem 4.1, k*+1>k* for T>O, so
 T

 (6.2) E [u(c* )-u(c* )]zpo*k* 4-q*S.
 t=1

 The right-hand side of (6.2) is independent of T; denote it by M Then 0 < M < oo
 and (6.2) implies that for T;1,

 u(c*+1 )4u(c*) +M.

 Denote u (c*) + M by M. Then (6.3) implies that u (c* ) -M for ts 1. By Theorem
 4.1, c* or as t->o. Hence, u is bounded above, proving (6.1).

 Given Lemma 6.1, the rest of the analysis of this section will be confined to the
 case where (6.1) holds, that is, where Assumption 8 holds. Then, as in Section 5,
 we shall normalize a = supc2o u (c) to zero.

 Following Brock and Gale [2, pp. 234-235], I define the elasticity of the utility
 function by

 (6.4) d(c) =-[u'(c)c]/u(c) for c > 0.

 The upper and lower asymptotic elasticities of the utility function (d and d,
 respectively) are defined by

 (6.5) d= lim sup d (c); d = lim inf d (c).
 C-OOo C->cX

 I will now make an additional assumption:

 ASSUMPTION 9: d>O.

 The following result establishes additional necessary conditions for an optimal
 program to exist (that is, in addition to (6.1)).

 THEOREM 6.1: Under Assumptions 1-9, if an optimal program exists, then

 (6.6) a >,f and
 00

 (6.7) w(v;a)dv<oo for allca>i.

 PROOF: Suppose an optimal program exists; call it (k, r, y, c). By Corollary 3.2
 and Theorem 4.1, ct > 0 and ct+l > ct for t , 1, so that inft_1ct = cl > 0. Also, by
 Theorem 4.1, kt -* o and rt -> ??, as t - oo, so that Xt -*o?. Suppose, now, that (6.6)
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 is violated, i.e., a < f.. Then, choose a > & such that a < P. Then there is x< 00
 such that G(k, r) = r f(x) S rx' = k`rO for x : x. Choose r < X such that xt : x for
 t>1r. Then G(k, rt)) s k'ro for t r.Then, fort - r, kt+l - kt G(kt, rt) kTrh. By
 Theorem 4.1, kt+j 1 kt for t O0, so for t ? r

 (6.8) [k+1 - 3 (kt+ - kt)/kt ] - r

 Summing the inequality in (6.8) from t = r to t = T>r, and using Holder's
 inequality,

 (6.9) [kT+l -kl]I E s [ rt1 [T -r+1]a
 t=r t=,

 Hence for t -r we certainly have k+1 sS(t+1)a+k'. Thus, there is H<oo,
 such that for t T,-

 (6.10) kt-Ht7.

 Now, for t : r, kTrO r G(kt, rt) = (kt+I - kt) + Ct+i 1 Ct+i (since kt+ 1kt for t : 0 by
 Theorem 4.1) >cl (since Ct+1;Ct for t: 1 by Theorem 4.1). Using (6.10),

 (6.11) r?k t : - - aY.

 Using (6.11), we have for t0r, rt::[c1/H](l/I)/[t(,/22)]. But a <,B, so 't= r, is
 divergent, a contradiction. Hence (6.6) must be satisfied.

 To establish (6.7), we note first that for t 1, [- u(ct)] = [u'(ct)ct/d(ct)]. By
 Theorem 4. 1, ct -> ?? as t -> oc. So d (ct) - [d/2] > 0 for t large. Hence there is D > 0
 such that D s d(c,) for t - 1. Thus, for t - 1,

 (6.12) [-u (ct)] s [(1/D)u'(ct)ct] = (1/D)ptct.

 Using (6.12) and noting from Corollary 3.1 that I?t=1 ptct < oo, we have

 00

 (6.13) E [- U(Ct)1<0C.
 t=4

 Pick any a > i, and note that by (6.6) a > P3. Then there is x < oo such that, for
 x f(x) -x. By Theorem 4.1 we know that xt ->o as t - oo. Hence there is
 t, < oo such that, for t - tl, G(kt, rt) = rtf(xt) s- k7r. Thus, for t > ti, kt+j - kt
 G(kt, rt) s karo. So for t ? ti,

 (6.14) [k+1 - k] S [(kt+l - kt)lkc] s ro

 using the fact from Theorem 4.1 that kt+l 1 kt for t , 0. Now, summing the
 inequality in (6.14) from t = t1 to t = t2 > ti, and using Holder's inequality, we have

 (6.15) [k3+i-ks k rO 4-[ rt [t2- tl +].
 t=tj t=tj
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 Hence for t-ti we certainly have k,+1 5(t+ 1)?+k . Thus, there is Ko<ao
 such that, for t - 0,

 (6.16) kt - Ko(t + 1)T.

 Note that, for t 3 ti, G(kh, rt) o< kTrh, so that we have [G(kt, rt)/ke] ka?r-
 [ktz 0](3/a. Also, Grt <4G(kt, rt)/rt] =f(xt) o x , so that [kt/Grt]j? (kt/Xa) ? ktzat.
 Using Corollary 3.2, we know that (ktl Grt) -> 0 as t -> oo. Hence there is K1 < 0
 such that [G(kt, rt)/kt ] S K1 for t > 0. Noting that c+,1 S G(kt, rt) for t ? 0 (since
 kt+l : kt for t > 0, by Theorem 4.1), and using (6.16) we finally have

 (6.17) ct+i + [G(kt, rt)/kE]kt -K1k sKK1Ho (t+ 1)e
 Hence there is K2<00 such that for t - 1, ct - K2t8, by using (6.17). Using this
 information in (6.13), we have

 00 00 00

 Y. w[K("8't; a] Z [-u(K2 t8)] E [-u(ct)] < .
 t=1 t=1 t=1

 Hence, by the Maclaurin-Cauchy integral test we have

 (6.19) j w(v; a) dv <o0.
 1

 Since a > & was arbitrarily chosen, the theorem is proved.

 The following nonexistence result is easily obtained from Theorem 6.1. It is,
 therefore, stated without proof.

 COROLLARY 6.1: Under Assumptions 1-9 there does not exist an optimal
 program if either

 (6.20) a < f3

 or, for some a > a,

 rK

 (6.21) Jw(v; a) dv- oo, as K- oo.

 The following example shows that this nonexistence result can be easily applied
 to cases where the utility and production functions are given by well-known
 parametric forms.

 EXAMPLE 6.1: Let G(k, r) = karp (where a, f are positive constants, ca + 13 = 1)
 and u(c) = - c (where o-> 1). Notice that Assumptions 1-9 are satisfied.
 Hence, if c </3, no optimal program exists. If a >,/, and o <[(1 -j6)/(& - 8)],
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 then there is some a >a such that o- < [(1 - f3)/(a -,3)]; that is, (o - 1)8 < 1.
 K K

 lir [ w(v;a) dv= lim [1/v''-1)8] dv=ao.
 K->oo 1 K->oo 1

 So (6.21) is satisfied and no optimal program exists.

 State University of New York at Stony Brook

 Manuscript received June, 1978; final revision received June, 1979.

 REFERENCES

 [1] BROCK, W. A.: "On Existence of Weakly Maximal Programmes in a Multi-Sector Economy,"
 Review of Economic Studies, 37 (1970), 275-280.

 [2] BROCK, W. A. AND D. GALE: "Optimal Growth Under Factor Augmenting Progress," Journal
 of Economic Theory, 1 (1969), 229-243.

 [3] DASGUPTA, P.: "Some Recent Theoretical Explorations in the Economics of Exhaustible
 Resources," Systems Approaches and Environmental Problems, ed. by Hans Werner Gottinger.
 Gottingen: Vandenhoeck and Ruprecht, 1973, pp. 193-214.

 [4] DASGUPTA, P., AND G. HEAL: "The Optimal Depletion of Exhaustible Resources," Review of
 Economic Studies, Symposium on the Economics of Exhaustible Resources, 41 (1974), 3-28.

 [5] : Economic Theory and Exhaustible Resources. Cambridge: Cambridge University Press,
 forthcoming.

 [6] GALE, D.: "On Optimal Development in a Multi-Sector Economy," Review of Economic
 Studies, 34 (1967), 1-18.

 [7] HARDY, G. H.: A Course of Pure Mathematics, Tenth Edition. Cambridge: Cambridge Uni-
 versity Press, 1967.

 [8] HOTELLING, H.: "The Economics of Exhaustible Resources," Journal of Political Economy, 39
 (1931),137-175.

 [9] KOOPMANS, T. C.: "On the Concept of Optimal Economic Growth," Pontificae Academia
 Scientiarum Scripta Varia, 28 (1965), 225-300.

 [10] McKENZIE, L. W. "Accumulation Programs of Maximum Utility and the von Neumann Facet,"
 in Value, Capital and Growth, ed. by J. N. Wolfe. Edinburgh: Edinburgh University Press,
 1968,353-383.

 [11] : "Turnpike Theorems with Technology and Welfare Function Variable," in Mathemati-
 cal Models in Economics, ed. by J. Los and M. W. Los. New York: American Elsevier, 1974,
 271-287.

 [12] MITRA, T.: "Efficient Growth with Exhaustible Resources in a Neoclassical Model," Joumal of
 Economic Theory, 17 (1978), 114-129.

 [13] : "On Maintainable Consumption Levels and Exhaustible Resources," State University
 of New York at Stony Brook, Working Paper No. 198, July, 1978.

 [14] PELEG, B.: "Efficiency Prices for Optimal Consumption Plans IV," SIAMJournal of Control, 10
 (1972), 414-433.

 [15] : "On Competitive Prices for Optimal Consumption Plans," SIAM Journal of Applied
 Mathematics, 26 (1974), 239-253.

 [16] PELEG, B., AND H. E. RYDER: "On Optimal Consumption Plans in a Multi-Sector Economy,"
 Review of Economic Studies, 39 (1972), 159-169.

 [17] RAMSEY, F.: "A Mathematical Theory of Saving," Economic Journal, 38 (1928), 543-559.
 [18] SOLOW, R. M.: "Intergenerational Equity and Exhaustible Resources," Review of Economic

 Studies, Symposium on the Economics of Exhaustible Resources, 41 (1974), 29-45.
 [19] STIGLITZ J.: "Growth with Exhaustible Natural Resources: Efficient and Optimal Growth

 Paths," Review of Economic Studies, Symposium on the Economics of Exhaustible Resources,
 41 (1974),123-137.

 [20] VON WEIZSACKER, C. C.: "Existence of Optimal Programs of Accumulation for an Infinite
 Time Horizon," Review of Economic Studies, 32 (1965), 85-104.

This content downloaded from 216.165.95.159 on Thu, 29 Aug 2019 17:33:48 UTC
All use subject to https://about.jstor.org/terms


	Contents
	image 1
	image 2
	image 3
	image 4
	image 5
	image 6
	image 7
	image 8
	image 9
	image 10
	image 11
	image 12
	image 13
	image 14
	image 15
	image 16
	image 17
	image 18
	image 19
	image 20

	Issue Table of Contents
	Econometrica: Journal of the Econometric Society, Vol. 48, No. 6, Sep., 1980
	Front Matter
	Estimation in Linear Regression Models with Disparate Data Points [pp.  1333 - 1346]
	Testing of the Rational Expectations Hypothesis [pp.  1347 - 1363]
	Recursive Competitive Equilibrium: The Case of Homogeneous Households [pp.  1365 - 1379]
	Estimating the Uncertainty of Policy Effects in Nonlinear Models [pp.  1381 - 1391]
	A Capital Market in an Equilibrium Business Cycle Model [pp.  1393 - 1417]
	On Proportional Malinvaud Prices [pp.  1419 - 1429]
	On Optimal Depletion of Exhaustible Resources: Existence and Characterization Results [pp.  1431 - 1450]
	Hybrid Corn Revisited [pp.  1451 - 1461]
	Hybrid Corn Revisited: A Reply [pp.  1463 - 1465]
	The Tiebout Hypothesis: Near Optimality in Local Public Good Economies [pp.  1467 - 1485]
	The Existence of Efficient and Incentive Compatible Equilibria with Public Goods [pp.  1487 - 1506]
	A Differential Approach to Dominant Strategy Mechanisms [pp.  1507 - 1520]
	On the Nonexistence of a Dominant Strategy Mechanism for Making Optimal Public Decisions [pp.  1521 - 1540]
	Notes and Comments
	Extending the Classical Normal Errors-in-Variables Model [pp.  1541 - 1546]
	On Seemingly Unrelated Regressions with Error Components [pp.  1547 - 1551]
	The Durbin-Watson Test for Serial Correlation when there is no Intercept in the Regression [pp.  1553 - 1563]
	Temporal Resolution of Uncertainty in Stapleton and Subrahmanyam's "Multiperiod Equilibrium Asset Pricing Model" [pp.  1565 - 1566]
	Gross Substitutability with Multi-Valued Excess Demand Functions [pp.  1567 - 1573]
	A Model in which an Increase in the Number of Sellers Leads to a Higher Price [pp.  1575 - 1579]

	1981 Summer Meeting of the Econometric Society [p.  1581]
	Accepted Manuscripts [p.  1581]
	News Notes [pp.  1582 - 1583]
	Submission of Manuscripts to Econometrica [p.  1584]
	Back Matter [pp.  1583 - 1583]



